Implementation of Robust Satellite Techniques for Volcanoes on ASTER Data under the Google Earth Engine Platform
نویسندگان
چکیده
The RST (Robust Satellite Techniques) approach is a multi-temporal scheme of satellite data analysis widely used to investigate and monitor thermal volcanic activity from space through high temporal resolution sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS), Spinning Enhanced Visible Infrared Imager (SEVIRI). In this work, we present results preliminary algorithm implementation infrared (TIR) data, at 90 m spatial resolution, Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER). Results achieved under Google Earth Engine (GEE) environment, by analyzing 20 years observations over three active volcanoes (i.e., Etna, Shishaldin Shinmoedake) located in different geographic areas, show that RST-based system, hereafter named RASTer, detected higher (around 25% more) number anomalies than well-established ASTER Volcano Archive (AVA). Despite availability less populated dataset other sensors, on guarantees an efficient identification mapping features even low intensity level. To improve continuity monitoring, possibility exploiting RASTer here addressed, perspective operational multi-satellite observing system. latter could include mid-high (e.g., Sentinel-2/MSI, Landsat-8/OLI), well those higher-temporal (lower-spatial) EOS/MODIS, Suomi-NPP/VIIRS, Sentinel-3/SLSTR), for which provide useful algorithm’s validation training dataset.
منابع مشابه
Exploring Google Earth Engine Platform for Big Data Processing: Classification of Multi-Temporal Satellite Imagery for Crop Mapping
Many applied problems arising in agricultural monitoring and food security require reliable crop maps at national or global scale. Large scale crop mapping requires processing and management of large amount of heterogeneous satellite imagery acquired by various sensors that consequently leads to a “Big Data” problem. The main objective of this study is to explore efficiency of using the Google ...
متن کاملInvestigation of land use changes in Gorganrood catchment using Google Earth Engine platform
The purpose of this study is to investigate landuse changes in Gorganrood basin in 2001, 2010 and 2019. Using Landsat and Product-Modes satellite images, used maps were prepared using the classification method of random forest algorithm in Google Earth Engine. Satellite imagery was classified into eight classes including forest, cropland, shrubland, grassland, wetland, urban, barren, and water....
متن کاملGoogle Earth Engine, Open-Access Satellite Data, and Machine Learning in Support of Large-Area Probabilistic Wetland Mapping
Modern advances in cloud computing and machine-leaning algorithms are shifting the manner in which Earth-observation (EO) data are used for environmental monitoring, particularly as we settle into the era of free, open-access satellite data streams. Wetland delineation represents a particularly worthy application of this emerging research trend, since wetlands are an ecologically important yet ...
متن کاملAn SDR Platform for Satellite Earth Stations
Satellite communication continues to grow in the burgeoning Wireless marketplace. Besides the standard Wireless telecommunications drivers such as ubiquitous high-speed communication and Internet access, satellite communication demand is also driven by entertainment applications like direct and interactive television. The demands imposed by the increase in satellite communication traffic drive ...
متن کاملthe clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied sciences
سال: 2021
ISSN: ['2076-3417']
DOI: https://doi.org/10.3390/app11094201